In “Logical Metainferentialism” (Ergo, forthcoming), Dicher and Paoli develop a theory of harmony for metainferential calculi in the FDE family, including ST. They identify a certain normal form—called there structurally atomic–analytic synthetic (SAAS) normal form—as the mark of harmony. A proof is in SAAS normal form iff it is structurally atomic (the structural rules apply to/produce only atomic formulae) and analytic–synthetic (all applications of elimination rules precede all applications of introduction rules). In “Sequent Calculi for First-Order ST” (JPhiLog, 2024), Paoli and Prenosil introduce a sequent calculus for ST employing generalized elimination rules for the quantifiers. In this talk, I present a calculus for ST in which all elimination rules are in general form, and I discuss which normal forms can be identified for this calculus and their significance for metainferential harmony.
Duração: 2.00 Horas
Instituição: Centro de Filosofia da Universidade de Lisboa
Tipo de Evento: Conferência | Colóquio | Palestra
Formato: Presencial
Máximo de Participantes por Sessão: 24
Coordenadas GPS: 38.7525379, -9.1568456
Morada: Faculdade de letras, Alameda da Universidade
Localidade: Lisboa
Concelho: LISBOA
Distrito: LISBOA
Mais informações: https://cful.letras.ulisboa.pt/lancog/seminar-series-in-analytic-philosophy-2025-26-session-10/
Data: